General Certificate of Education June 2009 Advanced Subsidiary Examination

MATHEMATICS Unit Further Pure 1

MFP1

Monday 1 June 2009 9.00 am to 10.30 am

For this paper you must have:

- an 8-page answer book
- the blue AQA booklet of formulae and statistical tables.

You may use a graphics calculator.

Time allowed: 1 hour 30 minutes

Instructions

- Use black ink or black ball-point pen. Pencil should only be used for drawing.
- Write the information required on the front of your answer book. The *Examining Body* for this paper is AQA. The *Paper Reference* is MFP1.
- Answer all questions.
- Show all necessary working; otherwise marks for method may be lost.

Information

- The maximum mark for this paper is 75.
- The marks for questions are shown in brackets.

Advice

• Unless stated otherwise, you may quote formulae, without proof, from the booklet.

P15275/Jun09/MFP1 6/6/

Answer all questions.

1 The equation

$$2x^2 + x - 8 = 0$$

has roots α and β .

- (a) Write down the values of $\alpha + \beta$ and $\alpha\beta$. (2 marks)
- (b) Find the value of $\alpha^2 + \beta^2$. (2 marks)
- (c) Find a quadratic equation which has roots $4\alpha^2$ and $4\beta^2$. Give your answer in the form $x^2 + px + q = 0$, where p and q are integers. (3 marks)
- 2 A curve has equation

$$y = x^2 - 6x + 5$$

The points A and B on the curve have x-coordinates 2 and 2 + h respectively.

- (a) Find, in terms of h, the gradient of the line AB, giving your answer in its simplest form. (5 marks)
- (b) Explain how the result of part (a) can be used to find the gradient of the curve at A. State the value of this gradient. (3 marks)
- 3 The complex number z is defined by

$$z = x + 2i$$

where x is real.

(a) Find, in terms of x, the real and imaginary parts of:

(i)
$$z^2$$
; (3 marks)

(ii)
$$z^2 + 2z^*$$
. (2 marks)

(b) Show that there is exactly one value of x for which $z^2 + 2z^*$ is real. (2 marks)

4 The variables x and y are known to be related by an equation of the form

$$y = ab^x$$

where a and b are constants.

(a) Given that $Y = \log_{10} y$, show that x and Y must satisfy an equation of the form

$$Y = mx + c (3 marks)$$

(b) The diagram shows the linear graph which has equation Y = mx + c.

Use this graph to calculate:

- (i) an approximate value of y when x = 2.3, giving your answer to one decimal place;
- (ii) an approximate value of x when y = 80, giving your answer to one decimal place.

(You are not required to find the values of m and c.) (4 marks)

5 (a) Find the general solution of the equation

$$\cos(3x - \pi) = \frac{1}{2}$$

giving your answer in terms of π .

(6 marks)

(b) From your general solution, find all the solutions of the equation which lie between 10π and 11π .

6 An ellipse *E* has equation

$$\frac{x^2}{3} + \frac{y^2}{4} = 1$$

- (a) Sketch the ellipse E, showing the coordinates of the points of intersection of the ellipse with the coordinate axes. (3 marks)
- (b) The ellipse E is stretched with scale factor 2 parallel to the y-axis.

Find and simplify the equation of the curve after the stretch.

(3 marks)

(c) The **original** ellipse, E, is translated by the vector $\begin{bmatrix} a \\ b \end{bmatrix}$. The equation of the translated ellipse is

$$4x^2 + 3y^2 - 8x + 6y = 5$$

Find the values of a and b.

(5 marks)

- 7 (a) Using surd forms where appropriate, find the matrix which represents:
 - (i) a rotation about the origin through 30° anticlockwise;

(2 marks)

- (ii) a reflection in the line $y = \frac{1}{\sqrt{3}}x$. (2 marks)
- (b) The matrix **A**, where

$$\mathbf{A} = \begin{bmatrix} 1 & \sqrt{3} \\ \sqrt{3} & -1 \end{bmatrix}$$

represents a combination of an enlargement and a reflection. Find the scale factor of the enlargement and the equation of the mirror line of the reflection. (2 marks)

(c) The transformation represented by **A** is followed by the transformation represented by **B**, where

$$\mathbf{B} = \begin{bmatrix} \sqrt{3} & -1 \\ 1 & \sqrt{3} \end{bmatrix}$$

Find the matrix of the combined transformation and give a full geometrical description of this combined transformation. (5 marks)

8 A curve has equation

$$y = \frac{x^2}{(x-1)(x-5)}$$

- (a) Write down the equations of the three asymptotes to the curve. (3 marks)
- (b) Show that the curve has no point of intersection with the line y = -1. (3 marks)
- (c) (i) Show that, if the curve intersects the line y = k, then the x-coordinates of the points of intersection must satisfy the equation

$$(k-1)x^2 - 6kx + 5k = 0 (2 marks)$$

(ii) Show that, if this equation has equal roots, then

$$k(4k+5) = 0 (2 marks)$$

(d) Hence find the coordinates of the two stationary points on the curve. (5 marks)

END OF QUESTIONS

There are no questions printed on this page

There are no questions printed on this page

There are no questions printed on this page